Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Leukoc Biol ; 115(3): 435-449, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37811856

RESUMO

Macrophages are key immune cells that can adapt their metabolic phenotype in response to different stimuli. Lysine deacetylases are important enzymes regulating inflammatory gene expression and lysine deacetylase inhibitors have been shown to exert anti-inflammatory effects in models of chronic obstructive pulmonary disease. We hypothesized that these anti-inflammatory effects may be associated with metabolic changes in macrophages. To validate this hypothesis, we used an unbiased and a targeted proteomic approach to investigate metabolic enzymes, as well as liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry, to quantify metabolites in combination with the measurement of functional parameters in primary murine alveolar-like macrophages after lipopolysaccharide-induced activation in the presence or absence of lysine deacetylase inhibition. We found that lysine deacetylase inhibition resulted in reduced production of inflammatory mediators such as tumor necrosis factor α and interleukin 1ß. However, only minor changes in macrophage metabolism were observed, as only one of the lysine deacetylase inhibitors slightly increased mitochondrial respiration while no changes in metabolite levels were seen. However, lysine deacetylase inhibition specifically enhanced expression of proteins involved in ubiquitination, which may be a driver of the anti-inflammatory effects of lysine deacetylase inhibitors. Our data illustrate that a multiomics approach provides novel insights into how macrophages interact with cues from their environment. More detailed studies investigating ubiquitination as a potential driver of lysine deacetylase inhibition will help developing novel anti-inflammatory drugs for difficult-to-treat diseases such as chronic obstructive pulmonary disease.


Assuntos
Lipopolissacarídeos , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lisina/metabolismo , Lisina/farmacologia , Proteômica , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia
2.
Sci Rep ; 13(1): 5670, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024614

RESUMO

Idiopathic pulmonary fibrosis is a progressive lung disease that causes scarring and loss of lung function. Macrophages play a key role in fibrosis, but their responses to altered morphological and mechanical properties of the extracellular matrix in fibrosis is relatively unexplored. Our previous work showed functional changes in murine fetal liver-derived alveolar macrophages on fibrous or globular collagen morphologies. In this study, we applied differential proteomics to further investigate molecular mechanisms underlying the observed functional changes. Macrophages cultured on uncoated, fibrous, or globular collagen-coated plastic were analyzed by liquid chromatography-mass spectrometry. The presence of collagen affected expression of 77 proteins, while 142 were differentially expressed between macrophages grown on fibrous or globular collagen. Biological process and pathway enrichment analysis revealed that culturing on any type of collagen induced higher expression of enzymes involved in glycolysis. However, this did not lead to a higher rate of glycolysis, probably because of a concomitant decrease in activity of these enzymes. Our data suggest that macrophages sense collagen morphologies and can respond with changes in expression and activity of metabolism-related proteins. These findings suggest intimate interactions between macrophages and their surroundings that may be important in repair or fibrosis of lung tissue.


Assuntos
Colágeno Tipo I , Proteômica , Camundongos , Animais , Colágeno Tipo I/metabolismo , Proteômica/métodos , Colágeno/metabolismo , Macrófagos/metabolismo , Fibrose
3.
J Proteome Res ; 22(4): 1213-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926972

RESUMO

In cancer metastasis, single circulating tumor cells (CTCs) in the blood and disseminated tumor cells (DTCs) in the bone marrow mediate cancer metastasis. Because suitable biomarker proteins are lacking, CTCs and DTCs with mesenchymal attributes are difficult to isolate from the bulk of normal blood cells. To establish a procedure allowing the isolation of such cells, we analyzed the cell line BC-M1 established from DTCs in the bone marrow of a breast cancer patient by stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry. We found high levels of the transmembrane protein CUB domain-containing protein 1 (CDCP1) in breast cancer cell lines with mesenchymal attributes. Peripheral blood mononuclear cells were virtually negative for CDCP1. Confirmation in vivo by CellSearch revealed CDCP1-positive CTCs in 8 of 30 analyzed breast cancer patients. Only EpCam-positive CTCs were enriched by CellSearch. Using the extracellular domain of CDCP1, we established a magnetic-activated cell sorting (MACS) approach enabling also the enrichment of EpCam-negative CTCs. Thus, our approach is particularly suited for the isolation of mesenchymal CTCs with downregulated epithelial cancer that occur, for example, in triple-negative breast cancer patients who are prone to therapy failure.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Mama/patologia , Molécula de Adesão da Célula Epitelial , Leucócitos Mononucleares , Células MCF-7 , Biomarcadores Tumorais , Metástase Neoplásica/patologia , Antígenos de Neoplasias , Moléculas de Adesão Celular
4.
J Proteome Res ; 22(3): 951-966, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36763818

RESUMO

Proteomics and metabolomics are essential in systems biology, and simultaneous proteo-metabolome liquid-liquid extraction (SPM-LLE) allows isolation of the metabolome and proteome from the same sample. Since the proteome is present as a pellet in SPM-LLE, it must be solubilized for quantitative proteomics. Solubilization and proteome extraction are critical factors in the information obtained at the proteome level. In this study, we investigated the performance of two surfactants (sodium deoxycholate (SDC), sodium dodecyl sulfate (SDS)) and urea in terms of proteome coverage and extraction efficiency of an interphase proteome pellet generated by methanol-chloroform based SPM-LLE. We also investigated how the performance differs when the proteome is extracted from the interphase pellet or by direct cell lysis. We quantified 12 lipids covering triglycerides and various phospholipid classes, and 25 polar metabolites covering central energy metabolism in chloroform and methanol extracts. Our study reveals that the proteome coverages between the two surfactants and urea for the SPM-LLE interphase pellet were similar, but the extraction efficiencies differed significantly. While SDS led to enrichment of basic proteins, which were mainly ribosomal and ribonuclear proteins, urea was the most efficient extraction agent for simultaneous proteo-metabolome analysis. The results of our study also show that the performance of surfactants for quantitative proteomics is better when the proteome is extracted through direct cell lysis rather than an interphase pellet. In contrast, the performance of urea for quantitative proteomics was significantly better when the proteome was extracted from an interphase pellet than by direct cell lysis. We demonstrated that urea is superior to surfactants for proteome extraction from SPM-LLE interphase pellets, with a particularly good performance for the extraction of proteins associated with metabolic pathways. Data are available via ProteomeXchange with identifier PXD027338.


Assuntos
Metanol , Proteoma , Proteoma/análise , Clorofórmio , Metaboloma , Tensoativos , Extração Líquido-Líquido/métodos , Ureia
5.
Cancers (Basel) ; 14(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139565

RESUMO

BACKGROUND: In pancreatic ductal adenocarcinoma (PDAC), the characterization of circulating tumor cells (CTCs) opens new insights into cancer metastasis as the leading cause of cancer-related death. Here, we focused on the expression of retinoic acid receptor responder 1 (RARRES1) on CTCs as a novel marker for treatment failure and early relapse. METHODS: The stable isotope labeling of amino acids in cell culture (SILAC)-approach was applied for identifying and quantifying new biomarker proteins in PDAC cell lines HPDE and its chemoresistant counterpart, L3.6pl-Res. Fifty-five baseline and 36 follow-up (FUP) peripheral blood samples were processed via a marker-independent microfluidic-based CTC detection approach using RARRES1 as an additional marker. RESULTS: SILAC-based proteomics identified RARRES1 as an abundantly expressed protein in more aggressive chemoresistant PDAC cells. At baseline, CTCs were detected in 25.5% of all PDAC patients, while FUP analysis (median: 11 months FUP) showed CTC detection in 45.5% of the resected patients. CTC positivity (≥3 CTC) at FUP was significantly associated with short recurrence-free survival (p = 0.002). Furthermore, detection of RARRES1 positive CTCs was indicative of an even earlier relapse after surgery (p = 0.001). CONCLUSIONS: CTC detection in resected PDAC patients during FUP is associated with a worse prognosis, and RARRES1 expression might identify an aggressive subtype of CTCs that deserves further investigation.

6.
Anal Chem ; 94(31): 10893-10906, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35880733

RESUMO

With increasing sensitivity and accuracy in mass spectrometry, the tumor phosphoproteome is getting into reach. However, the selection of quantitation techniques best-suited to the biomedical question and diagnostic requirements remains a trial and error decision as no study has directly compared their performance for tumor tissue phosphoproteomics. We compared label-free quantification (LFQ), spike-in-SILAC (stable isotope labeling by amino acids in cell culture), and tandem mass tag (TMT) isobaric tandem mass tags technology for quantitative phosphosite profiling in tumor tissue. Compared to the classic SILAC method, spike-in-SILAC is not limited to cell culture analysis, making it suitable for quantitative analysis of tumor tissue samples. TMT offered the lowest accuracy and the highest precision and robustness toward different phosphosite abundances and matrices. Spike-in-SILAC offered the best compromise between these features but suffered from a low phosphosite coverage. LFQ offered the lowest precision but the highest number of identifications. Both spike-in-SILAC and LFQ presented susceptibility to matrix effects. Match between run (MBR)-based analysis enhanced the phosphosite coverage across technical replicates in LFQ and spike-in-SILAC but further reduced the precision and robustness of quantification. The choice of quantitative methodology is critical for both study design such as sample size in sample groups and quantified phosphosites and comparison of published cancer phosphoproteomes. Using ovarian cancer tissue as an example, our study builds a resource for the design and analysis of quantitative phosphoproteomic studies in cancer research and diagnostics.


Assuntos
Neoplasias Ovarianas , Proteômica , Feminino , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Neoplasias Ovarianas/diagnóstico , Proteoma/química , Proteômica/métodos
7.
Anal Chem ; 94(24): 8580-8587, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678765

RESUMO

Additive manufacturing (3D printing) has greatly revolutionized the way researchers approach certain technical challenges. Despite its outstanding print quality and resolution, stereolithography (SLA) printing is cost-effective and relatively accessible. However, applications involving mass spectrometry (MS) are few due to residual oligomers and additives leaching from SLA-printed devices that interfere with MS analyses. We identified the crosslinking agent urethane dimethacrylate as the main contaminant derived from SLA prints. A stringent washing and post-curing protocol mitigated sample contamination and rendered SLA prints suitable for MS hyphenation. Thereafter, SLA printing was used to produce 360 µm I.D. microcolumn chips with excellent structural properties. By packing the column with polystyrene microspheres and covalently immobilizing pepsin, an exceptionally effective microscale immobilized enzyme reactor (µIMER) was created. Implemented in an online liquid chromatography-MS/MS setup, the protease microcolumn enabled reproducible protein digestion and peptide mapping with 100% sequence coverage obtained for three different recombinant proteins. Additionally, when assessing the µIMER digestion efficiency for complex proteome samples, it delivered a 144-fold faster and significantly more efficient protein digestion compared to 24 h for bulk digestion. The 3D-printed µIMER withstands remarkably high pressures above 130 bar and retains its activity for several weeks. This versatile platform will enable researchers to produce tailored polymer-based enzyme reactors for various applications in analytical chemistry and beyond.


Assuntos
Enzimas Imobilizadas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Enzimas Imobilizadas/química , Mapeamento de Peptídeos/métodos , Impressão Tridimensional
8.
Nat Commun ; 13(1): 2982, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624087

RESUMO

Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling.


Assuntos
Transdução de Sinais , Estearoil-CoA Dessaturase , Animais , Apoptose , Ácidos Graxos , Camundongos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Resposta a Proteínas não Dobradas
9.
Electrophoresis ; 43(11): 1203-1214, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285965

RESUMO

Multiple spotting due to protein speciation might increase a protein's chance of being captured in a random selection of 2-DE spots. We tested this expectation in new (PXD015649) and previously published 2-DE/MS data of porcine and human tissues. For comparison, we included bottom-up proteomics studies (BU-LC/MS) of corresponding biological materials. Analyses of altogether ten datasets proposed that amino acid modification fosters multispotting in 2-DE. Thus, the number of 2-DE spots containing a particular protein more tightly associated with a peptide diversity measure accounting for amino acid modification than with an alternative one disregarding it. Furthermore, every 11th amino acid was a post-translational modification candidate site in 2-DE/MS proteins, whereas in BU-LC/MS proteins this was merely the case in every 21st amino acid. Alternative splicing might contribute to multispotting, since genes encoding 2-DE/MS proteins were found to have on average about 0.3 more transcript variants than their counterparts from BU-LC/MS studies. Correspondingly, resolution completeness as estimated from the representation of transcript variant-rich genes was higher in 2-DE/MS than BU-LC/MS datasets. These findings suggest that the ability to resolve proteomes down to protein species can lead to enrichment of multispotting proteins in 2-DE/MS. Low sensitivity of stains and MS instruments appears to enhance this effect.


Assuntos
Proteoma , Proteômica , Aminoácidos , Animais , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Suínos
10.
Respir Res ; 23(1): 15, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073932

RESUMO

BACKGROUND: There is a strong need for biomarkers to better characterize individuals with COPD and to take into account the heterogeneity of COPD. The blood protein sRAGE has been put forward as promising biomarker for COPD in general and emphysema in particular. Here, we measured plasma sRAGE levels using quantitative LC-MS and assessed whether the plasma sRAGE levels associate with (changes in) lung function, radiological emphysema parameters, and radiological subtypes of emphysema. METHODS: Three hundred and twenty-four COPD patients (mean FEV1: 63%predicted) and 185 healthy controls from the COPDGene study were selected. Plasma sRAGE was measured by immunoprecipitation in 96-well plate methodology to enrich sRAGE, followed by targeted quantitative liquid chromatography-mass spectrometry. Spirometry and HRCT scans (inspiration and expiration) with a 5-year follow-up were used; both subjected to high quality control standards. RESULTS: Lower sRAGE values significantly associated with the presence of COPD, the severity of airflow obstruction, the severity of emphysema on HRCT, the heterogeneous distribution of emphysema, centrilobular emphysema, and 5-year progression of emphysema. However, sRAGE values did not associate with airway wall thickness or paraseptal emphysema. CONCLUSIONS: Rather than being a general COPD biomarker, sRAGE is especially a promising biomarker for centrilobular emphysema. Follow-up studies should elucidate whether sRAGE can be used as a biomarker for other COPD phenotypes as well.


Assuntos
Pulmão/diagnóstico por imagem , Enfisema Pulmonar/sangue , Receptor para Produtos Finais de Glicação Avançada/sangue , Tomografia Computadorizada por Raios X/métodos , Capacidade Vital/fisiologia , Idoso , Biomarcadores/sangue , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/fisiopatologia
11.
Clin Chem ; 68(2): 344-353, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458901

RESUMO

BACKGROUND: Despite recent progress in liquid biopsy technologies, early blood-based detection of breast cancer is still a challenge. METHODS: We analyzed secretion of the protein cellular communication network factor 1 (CCN1, formerly cysteine-rich angiogenic inducer 61) in breast cancer cell lines by an enzyme-linked immunosorbent assay (ELISA). Soluble CCN1 in the plasma (2.5 µL) of 544 patients with breast cancer and 427 healthy controls was analyzed by ELISA. The breast cancer samples were acquired at the time of primary diagnosis prior to neoadjuvant therapy or surgery. A classifier was established on a training cohort of patients with breast cancer and age-adapted healthy controls and further validated on an independent cohort comprising breast cancer patients and healthy controls. Samples from patients with benign breast diseases were investigated as additional controls. Samples from patients with acute heart diseases (n = 127) were investigated as noncancer controls. The diagnostic accuracy was determined by receiver operating characteristic using the parameters area under the curve, sensitivity, and specificity. RESULTS: CCN1 was frequently secreted by breast cancer cell lines into the extracellular space. Subsequent analysis of clinical blood samples from patients with breast cancer and age-adjusted healthy controls revealed an overall specificity of 99.0% and sensitivity of 80.0% for cancer detection. Remarkably, 81.5% of small T1 cancers were already CCN1-positive, while CCN1 concentrations in patients with benign breast lesions were below the threshold for breast cancer detection. CONCLUSIONS: Circulating CCN1 is a potentially novel blood biomarker for the detection of breast cancer at the earliest invasive stage.


Assuntos
Neoplasias da Mama , Biomarcadores , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Detecção Precoce de Câncer , Feminino , Humanos , Biópsia Líquida , Proteínas
12.
Front Immunol ; 12: 746151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804028

RESUMO

Diabetes mellitus type II and obesity are two important causes of death in modern society. They are characterized by low-grade chronic inflammation and metabolic dysfunction (meta-inflammation), which is observed in all tissues involved in energy homeostasis. A substantial body of evidence has established an important role for macrophages in these tissues during the development of diabetes mellitus type II and obesity. Macrophages can activate into specialized subsets by cues from their microenvironment to handle a variety of tasks. Many different subsets have been described and in diabetes/obesity literature two main classifications are widely used that are also defined by differential metabolic reprogramming taking place to fuel their main functions. Classically activated, pro-inflammatory macrophages (often referred to as M1) favor glycolysis, produce lactate instead of metabolizing pyruvate to acetyl-CoA, and have a tricarboxylic acid cycle that is interrupted at two points. Alternatively activated macrophages (often referred to as M2) mainly use beta-oxidation of fatty acids and oxidative phosphorylation to create energy-rich molecules such as ATP and are involved in tissue repair and downregulation of inflammation. Since diabetes type II and obesity are characterized by metabolic alterations at the organism level, these alterations may also induce changes in macrophage metabolism resulting in unique macrophage activation patterns in diabetes and obesity. This review describes the interactions between metabolic reprogramming of macrophages and conditions of metabolic dysfunction like diabetes and obesity. We also focus on different possibilities of measuring a range of metabolites intra-and extracellularly in a precise and comprehensive manner to better identify the subsets of polarized macrophages that are unique to diabetes and obesity. Advantages and disadvantages of the currently most widely used metabolite analysis approaches are highlighted. We further describe how their combined use may serve to provide a comprehensive overview of the metabolic changes that take place intracellularly during macrophage activation in conditions like diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Acetilação , Diabetes Mellitus Tipo 2/imunologia , Epigênese Genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Imunomodulação , Inflamação/imunologia , Insulina/metabolismo , Resistência à Insulina , Ativação de Macrófagos , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Obesidade/imunologia , Fosforilação Oxidativa , Consumo de Oxigênio , Processamento de Proteína Pós-Traducional
13.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685691

RESUMO

Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas , Aminoácidos/deficiência , Animais , Proteínas Sanguíneas/farmacologia , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Organogênese/efeitos dos fármacos , Análise de Componente Principal , Mapas de Interação de Proteínas/efeitos dos fármacos , Sirolimo/farmacologia
14.
Anal Bioanal Chem ; 413(30): 7333-7340, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34705077

RESUMO

Stable isotope labelling in combination with high-resolution mass spectrometry approaches are increasingly used to analyze both metabolite and protein modification dynamics. To enable correct estimation of the resulting dynamics, it is critical to correct the measured values for naturally occurring stable isotopes, a process commonly called isotopologue correction or deconvolution. While the importance of isotopologue correction is well recognized in metabolomics, it has received far less attention in proteomics approaches. Although several tools exist that enable isotopologue correction of mass spectrometry data, the majority is tailored for the analysis of low molecular weight metabolites. We here present PICor which has been developed for isotopologue correction of complex isotope labelling experiments in proteomics or metabolomics and demonstrate the importance of appropriate correction for accurate determination of protein modifications dynamics, using histone acetylation as an example.


Assuntos
Marcação por Isótopo/métodos , Proteínas/química , Acetilcoenzima A/análise , Acetilação , Animais , Cromatografia Líquida/métodos , Células HEK293 , Humanos , Camundongos , Peso Molecular , Processamento de Proteína Pós-Traducional , Proteômica , Células RAW 264.7 , Espectrometria de Massas em Tandem/métodos
15.
J Proteome Res ; 20(11): 5218-5221, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34669399

RESUMO

Affinity ligands such as antibodies are widely used in (bio)medical research for purifying proteins from complex biological samples. These ligands are generally immobilized onto solid supports which facilitate the separation of a captured protein from the sample matrix. Adsorptive microtiter plates are commonly used as solid supports prior to immunochemical detection (e.g., immunoassays) but hardly ever prior to liquid chromatography-mass spectrometry (LC-MS-)-based detection. Here, we describe the use of adsorptive microtiter plates for protein enrichment prior to LC-MS detection, and we discuss opportunities and challenges of corresponding workflows, based on examples of targeted (i.e., soluble receptor for advanced glycation end-products (sRAGE) in human serum) and discovery-based workflows (i.e., transcription factor p65 (NF-κB) in lysed murine RAW 264.7 macrophages and peptidyl-prolyl cis-trans isomerase FKBP5 (FKBP5) in lysed human A549 alveolar basal epithelial cells). Thereby, we aim to highlight the potential usefulness of adsorptive microtiter plates in affinity purification workflows prior to LC-MS detection, which could increase their usage in mass spectrometry-based protein research.


Assuntos
Fluxo de Trabalho , Animais , Cromatografia de Afinidade , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Camundongos , Receptor para Produtos Finais de Glicação Avançada
16.
Anal Chem ; 93(38): 12872-12880, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34519498

RESUMO

Histone acetylation is an important, reversible post-translational protein modification and a hallmark of epigenetic regulation. However, little is known about the dynamics of this process, due to the lack of analytical methods that can capture site-specific acetylation and deacetylation reactions. We present a new approach that combines metabolic and chemical labeling (CoMetChem) using uniformly 13C-labeled glucose and stable isotope-labeled acetic anhydride. Thereby, chemically equivalent, fully acetylated histone species are generated, enabling accurate relative quantification of site-specific lysine acetylation dynamics in tryptic peptides using high-resolution mass spectrometry. We show that CoMetChem enables site-specific quantification of the incorporation or loss of lysine acetylation over time, allowing the determination of reaction rates for acetylation and deacetylation. Thus, the CoMetChem methodology provides a comprehensive description of site-specific acetylation dynamics.


Assuntos
Epigênese Genética , Histonas , Acetilação , Cromatografia Líquida , Histonas/metabolismo , Isótopos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
17.
Anal Chem ; 93(32): 11215-11224, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34355890

RESUMO

The accurate processing of complex liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) data from biological samples is a major challenge for metabolomics, proteomics, and related approaches. Here, we present the pipelines and systems for threshold-avoiding quantification (PASTAQ) LC-MS/MS preprocessing toolset, which allows highly accurate quantification of data-dependent acquisition LC-MS/MS datasets. PASTAQ performs compound quantification using single-stage (MS1) data and implements novel algorithms for high-performance and accurate quantification, retention time alignment, feature detection, and linking annotations from multiple identification engines. PASTAQ offers straightforward parameterization and automatic generation of quality control plots for data and preprocessing assessment. This design results in smaller variance when analyzing replicates of proteomes mixed with known ratios and allows the detection of peptides over a larger dynamic concentration range compared to widely used proteomics preprocessing tools. The performance of the pipeline is also demonstrated in a biological human serum dataset for the identification of gender-related proteins.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Algoritmos , Cromatografia Líquida , Humanos , Peptídeos , Proteoma
18.
Glycobiology ; 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34420045

RESUMO

Truncated O-GalNAc glycosylation is an important feature of pancreatic ductal adenocarcinomas (PDAC) and expression of truncated O-GalNAc glycans is strongly associated with decreased survival and poor prognosis. It has been proven, that aberrant O-GalNAc glycosylation influence PDAC signaling to promote oncogenic properties, but elucidation of the influence of truncated O-GalNAc glycosylation on different signaling molecules has just been started. We herein elucidated the impact of aberrant O-GalNAc glycosylation on two important PDAC signaling pathways, namely AKT/mTOR and RAS/MAPK. In PDAC cells expressing truncated O-GalNAc glycans, we identified differentially expressed proteins associated with AKT/mTOR and RAS/MAPK pathways using quantitative proteomics. Since AKT, a key-signaling molecule in PDAC, was among the identified proteins, we analyzed AKT and found a strikingly enhanced S473 phosphorylation and identified a previously unknown O-GalNAc-modification. Consecutive analysis of COSMC knockdowns in PDAC revealed strong effects on AKT upstream and downstream effector molecules. Interestingly, truncated O-GalNAc glycans could facilitate an mTORC1 inhibitor resistance using AZD8055. In addition, as AKT/mTOR pathway has extensive cross talks with RAS/MAPK pathway we analyzed the pathways and found it negatively regulated. Finally, we found that the expression of epithelial-mesenchymal-transition markers, key features of aggressive PDACs cells, are enhanced and truncated O-GalNAc glycans enhance pancreatic cancer cell growth in a xenograft mouse model. Our study demonstrates that truncated O-GalNAc glycans have a strong impact on AKT/mTOR and RAS/MAPK signaling pathways, are modulated by EGF or IGF-1 signaling and should be considered for targeted therapy of these pathways in PDAC.

19.
Biomolecules ; 11(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065941

RESUMO

The class of demosponges is the biggest and most diverse of all described sponge species and it is reported to produce a plethora of chemically different metabolites with interesting biological activities. The focus of the present study was to investigate the chemical composition of two Mediterranean demosponges, targeting their brominated compounds and prenylated hydroquinones, compounds with interesting cytotoxic and anti-microbial properties. In order to gain a deeper insight into the chemical diversity of their metabolites and their activities, 20 pure secondary metabolites including new natural products were isolated from two different species (Aplysina aerophoba and Spongia sp.) using various chromatographic techniques. Their structures were confirmed by NMR and HRMS, revealing molecules with various chemical scaffolds, mainly prenylated hydroquinones from Spongia sp. and halogenated compounds from Aplysina aerophoba, including 5 novel natural products. The isolated compounds were investigated for their cytotoxic properties using 9 different cell lines, and especially one compound, 2,6-dibromo-4-hydroxy-4-methoxycarbonylmethylcyclohexa-2,5-dien-1-one showed good activities in all tested models.


Assuntos
Produtos Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Citotoxinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias/tratamento farmacológico , Poríferos/química , Animais , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
20.
PLoS One ; 16(6): e0253084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111210

RESUMO

Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.


Assuntos
Anticorpos Monoclonais/metabolismo , Chaperonina 60/imunologia , Infecções por Rickettsia/sangue , Rickettsia typhi/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/sangue , Antígenos de Bactérias/imunologia , Linhagem Celular , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos SCID , Periplasma/metabolismo , Infecções por Rickettsia/imunologia , Infecções por Rickettsia/microbiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...